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 Sequence complexity has three subsets: Random (RSC), Ordered 
(OSC), and Functional (FSC).1  Functional Sequence Complexity is 
measured in “Fits.”  Fits are “functional bits.”2-4 
 To understand Functional Sequence Complexity (FSC), one must first 
digest the essence of the other two subsets of sequence complexity.  Random 
Sequence Complexity (RSC) lies at the opposite end of a bi-directional 
sequence complexity vector from Ordered Sequence Complexity (OSC).    
 
Order              Randomness 
OSC                                RSC 
Increasing complexity→ 
Minimal Uncertainty                                     Maximum Uncertainty 
Low Shannon bit content            High Shannon bit content 
Maximum compressibility                    Minimum compressibility 
Most patterned                Least patterned 
 
 

 Random Sequence Complexity  (RSC) is defined by an inability to 
compress a sequence into a representation shorter than the sequence itself.  
The sequence lacks any redundant order or pattern that would allow 
compression.  With RSC, no patterns exist in the sequence either from 
natural law constraints or from repeated use of programming modules. 
 Ordered Sequence Complexity (OSC) is typically produced by law-
like cause-and-effect determinism. Such forced ordering produces boring 
redundancy and also precludes choice contingency needed for any form of 
programming.  Combinatorial uncertainty, freedom of selection, and 
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potential information instantiation are all precluded in highly ordered 
strings.  An example of a highly ordered string is a polyadenosine that 
adsorbs naturally onto montmorillonite clay.5-7  Algorithmic programming 
and control are made impossible when sequences are constrained by law.   
 Functional Sequence Complexity (FSC) is invariably associated with 
all forms of non-trivial formal utility. The algorithmic programming of FSC 
requires anticipation of the future.  Purposeful choices for potential final 
function must be made.   Mere aperiodicity of a sequence is not sufficient to 
define FSC.  RSC is aperiodic; yet RSC produces no formal and final 
function.     
 Usually, FSC comes in the form of linear digital prescription using a 
symbol system.  FSC requires the programming dimension of uncoerced 
choices for potential function at successive decision nodes in the string.  
RSC has mere bifurcation points, with nothing more than coin flips at each 
successive fork in the road to determine which fork to take.  No expectation 
of improved trip efficiency exists when coin flips are used to determine 
which fork in the road to take.   
 Rats improve their exit time from mazes by memorizing wise 
purposeful choices at each successive decision node. Those choices must be 
made prior to the realization of any function.  Utility (making it out of the 
maze) is only realized at the end of a long string of choices.  The choices 
must be made IN PURSUIT OF eventual usefulness, not immediate 
gradification.   
 A succession of purposeful binary choices can be recorded as a string 
of symbols (e.g., 0’s vs. 1’s).   That string of symbols represents FSC, the 
same as any computational program in computer science. 
 Thus, FSC arises only out of wise choices at true decision nodes, logic 
gates, and purposeful configurable switch-settings.  The latter can only be 
set by formalism, not physicality, if sophisticated function is to be realized.  
In the generation of FSC, not only must each successive choice opportunity 
be free from physicodynamic determinism, it must be deliberately chosen en 
route to achieving eventual formal and final function. 
 Choice Determinism (CD), as opposed to Physicodynamic 
Determinism (PD), is quite real in producing any FSC string.  The causation 
of FSC is formal (abstract, conceptual, and choice-based), not physical.  The 
generation of FSC strings has never been observed to come into existence 
independent of agency.  Zero empirical evidence exists of inanimate 
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physicality producing an integrated circuit, a genetic algorithm, a symbol 
system, language, or computational success. 
 No empirical evidence exists of either RSC of OSC ever having 
produced a single instance of sophisticated function or true organization.  
Algorithmic optimization requires purposeful choices to pursue eventual 
ideal function.  Prescriptive Information (PI), circuit integration, and 
organization all invariably manifest FSC.  Any attempt to deny the need and 
reality of purposeful choices precludes the production of any sophisticated 
function.  Naturalistic philosophic presuppositions militate against 
acknowledging the obvious facts of reality.  “Chance and Necessity” is a 
false dichotomy.  Reality actually consists of three fundamental categories, 
not two:  Chance, Necessity and Choice.  By Choice, we do not mean mere 
Selection FROM AMONG [evolution].  The kind of Choice clearly observed 
everyday by everyone as a major component of reality includes Selection 
FOR (IN PURSUIT OF) not yet existent function.8-11  Inanimate nature 
cannot exercise or generate such choice with intent.  Only agency does.  
Mere mass/energy interactions have never been shown to produce the 
slightest hint of agency. 
 Nucleic acid genes, promoters and other regulators are examples of 
FSC, not OSC or RSC.  The sequencing of nucleotides in single positive 
strands is physicodynamically indeterminate (free, unconstrained by natural 
law).   Clearly this sequencing is not random either.  Way too much 
sophisticated control is prescribed by all these sequences to attribute to 
noise.   Meaningful/functional messages are also sent and received using 
FSC strings (“messenger molecules;” biopolymers).   
 From the perspective of amino-acid-sequence prescription alone, 
genomes are programmed using sophisticated noise-reducing block codes  
(Triplet codons prescribe each amino acid).  The redundancy found in the 
codon table is misleading, however.  Superimposed on triplet codon 
language is a second independent language involving hexamers.  
Intracellular languages are multi-layered, using the same symbols, but with 
different meanings and functions in conveyed simultaneously in each 
language.  Coding is therefore multidimensional.  The hexameric language 
prescribes Translational Pausing (TP).12,13 TP in turn determines correct 
folding of the polyamino chain at the back door of the ribosome to produce 
properly folded molecular-machine proteins.13 Both of these superimposed 
languages manifest FSC in the sequencing of nucleotides.  Each locus in the 
string represents a quaternary choice from among four options. 
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 Linear sequence complexity has received extensive study in many 
areas relating to Shannon’s syntactic transmission theory.14-16  This theory 
pertains only to communication engineering.  Linear complexity was further 
investigated by Kolmogorov, Solomonoff, and Chaitin.17-21  Compressibility 
became the measure of linear complexity in this school of thought.   
Hamming pursued the goal of noise-pollution reduction in Shannon’s 
communication channel through redundancy coding.22  Communication 
engineering has improved by leaps and bounds. 

Little progress has been made, however, in measuring and explaining 
intuitive information.  This is especially true regarding the derivation 
through natural process of semantic instruction.  The purely syntactic 
approaches to sequence complexity of Shannon, Kolmogorov, and Hamming 
have little or no relevance to “meaning.”  Shannon acknowledged this in the 
3rd paragraph of his first famous paper right from the beginning of his 
research.15  Inadequacy is still very apparent in more recent attempts to 
define and measure functional complexity and information.23-59  

Nucleic acid instructions reside in linear, digital, and resortable 
sequences.60-63  Replication is sufficiently mutable for evolution, yet 
conserved, competent, and repairable for heritability.64   

In life-origin science, attention usually focuses on a theorized pre-
RNA World.65-68   RNA chemistry is extremely challenging in a prebiotic 
context.  Ribonucleotides are difficult to make and activate (charge).  
Oligoribonucleotides are also extremely hard to form, especially without 
templating.  The maximum length of such single strands in solution is 
usually only eight to ten monomers (mers).  As a result, many investigators 
suspect that some chemical RNA analog must have existed69,70.  For our 
purposes here of discussing linear sequence complexity, let us assume 
adequate availability of all four ribonucleotides in a pre-RNA prebiotic 
molecular evolutionary environment.  Any one of the four ribonucleotides 
could be polymerized next in solution onto a forming single-stranded 
polyribonucleotide.  Let us also ignore in our model for the moment that the 
maximum achievable length of aqueous polyribonucleotides seems to be no 
more than eight to ten monomers (mers).  Physicochemical dynamics do not 
determine the particular sequencing of these single-stranded, untemplated 
polymers of RNA.  The selection of the initial “sense” sequence is largely 
free of natural law influences and constraints.  Sequencing is dynamically 
inert71.   
 Initial sequencing of single-stranded RNA-like analogs is crucial to 
most life-origin models.  Particular sequencing leads not only to a theorized 
self- or mutually-replicative primary structure, but to catalytic capability of 
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that same or very closely-related sequence.   One of the biggest problems for 
the pre-RNA World model is finding sequences that can simultaneously self-
replicate and catalyze needed metabolic functions.   For even the simplest 
protometabolic function to arise, large numbers of such self-replicative and 
metabolically contributive oligoribonucleotides would have to arise at the 
same place at the same time. 
 Little empirical evidence exists to contradict the contention that 
untemplated sequencing is dynamically inert (physically arbitrary).  We are 
accustomed to thinking in terms of base-pairing complementarity 
determining sequencing.  It is only in researching the pre-RNA world that 
the problem of single-stranded metabolically functional sequencing of 
ribonucleotides (or their analogs) becomes acute.  And of course highly-
ordered templated sequencing of RNA strands on natural surfaces such as 
montmorillonite clay offers no explanation for biofunctional sequencing.  
The question is never answered, “From what source did the template derive 
its functional information?”  In fact, no empirical evidence has been 
presented of a naturally-occurring inorganic or organic template that 
contains anything more than combinatorial uncertainty.  No bridge has been 
established between combinatorial uncertainty and utility of any kind. 
 Increased frequencies of certain ribonucleotides, CG for example, are 
seen in post-textual reference sequences.  This is like citing an increased 
frequency of "qu" in post-textual English language.  The only reason "q" and 
"u" have a higher frequency of association in English is because of 
arbitrarily chosen rules, not laws, of the English language.  Apart from 
linguistic rules, all twenty-six English letters are equally available for 
selection at any sequential decision node.  But we are attempting to model a 
purely pre-textual, combinatorial, chemical-dynamic theoretical primordial 
soup. No evidence exists that such a soup ever existed.  But assuming that 
all four ribonucleotides might have been equally available in such a soup, no 
such “qu” type rule-based linkages would have occurred chemically between 
ribonucleotides.  They are freely resortable apart from templating and 
complementary binding.  Weighted means of each base polymerization 
would not have deviated far from p = 0.25.  Dimers seem to show some 
physical predilections.  But longer stochastic ensembles seem randomly 
sequenced, with no prescriptive function. 

When we introduce ribonucleotide availability realities into our soup 
model, we would not expect hardly any cytosine to be incorporated into the 
early genetic code.  Cytosine is extremely difficult even for highly skilled 
chemists to generate.72,73  If an extreme paucity of cytosine existed in a 
primordial environment, uncertainty would have been greatly reduced.  
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Heavily weighted means of relative occurrence of the other three bases 
would have existed.  The potential for recordation of prescriptive 
information would have been reduced by the resulting high probability and 
low uncertainty of base “selection.”  Self-ordering would have prevailed 
over complexity.  

All aspects of life manifest extraordinarily high quantities of 
prescriptive information.  Any self-ordering (law-like behavior) or weighted-
mean tendencies (e.g., reduced availability of certain bases) would have 
limited information instantiation and retention in the sequencing.    
 If non-templated chemistry predisposes higher frequencies of certain 
bases, how did so many highly-informational genes get coded?  Any 
programming effort would have had to fight against a highly prejudicial self-
ordering physicodynamic redundancy.  There would have been little or no 
uncertainty (bits) at each locus.  Information potential would have been 
severely constrained. 
 
Functional Bits (Fits) 
 The evolution of amino acid sequence, and its effect on biofunction, 
can now be quantified in “fits” (functional bits).4      
 To understand how Functional Sequence Complexity can be 
measured, we must first understand “Functional Uncertainty (Hf):”  

 
“Shannon's original formulation, when applied to biological 

sequences, does not express variations related to biological 
functionality such as metabolic utility.  Shannon uncertainty, 
however, can be extended to measure the joint variable (X, F), where 
X represents the variability of data, and F functionality.  This 
explicitly incorporates empirical knowledge of metabolic function 
into the measure that is usually important for evaluating sequence 
complexity.  This measure of both the observed data and a conceptual 
variable of function jointly can be called Functional Uncertainty 
(Hf),74 and is defined by the equation:  
 
 H(Xf(t)) = - ∑ P(Xf(t)) logP(Xf(t))   (1) 

 
where t = a certain time and Xf denotes the conditional variable of the 
given sequence data (X) on the described biological function f which 
is an outcome of the variable (F)."74  
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 In this approach, f might represent the known 3-D structure of a 
protein family. The entire set of aligned sequences that satisfies that 
protein’s function, therefore, would constitute the outcomes of Xf. The 
advantage of using H(Xf(t)) is that evolutionary changes through time in the 
functionality of sequences can be measured.  
 
Functional uncertainty as a measure of FSC 

The measure of Functional Sequence Complexity, denoted as ζ, is 
defined as the change in functional uncertainty from the ground state 
H(Xg(ti)) to the functional state H(Xf(ti)), or 
 

ζ = ∆ H (Xg(ti), Xf(tj)) .      (2) 
 
 The resulting unit of measure is defined on the joint data and 
functionality variable, which we call Fits (or Functional bits).  The unit Fit 
thus defined is related to the intuitive concept of functional information, 
including genetic instruction and, thus, provides an important distinction 
between functional information and Shannon information.75,76  
 The limitation of Functional Sequence Complexity (FSC) 
measurements is that they are nonspecific averages.  In addition, the change 
in negative Shannon Uncertainty is only obtained by the extrinsic injection 
of true positive information into the equation.  Our probabilistic 
combinatorial uncertainty is educated only by the empirical data providing 
the relative certainty of which particular sequences will work.  We sneak in 
through the back door, in other words, the real semantic, functional 
information rather than the equation generating it.   The empirical data is 
only obtained after the fact, and in very general statistical terms.   
 The reason FSC does not qualify as Prescriptive Information (PI)77 is 
that it cannot specifically enumerate which particular sequences will work.  
The latter is the real essence of intuitive, functional, prescriptive information 
(PI). 
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